Periodic Table Gallery

An exciting time for chemistry

Two new elements, flerovium Fl and livermoreium Lv have been approved for entry in the Periodic Table of the Elements! They were formerly known by blander names—ununquadium and ununhexium. In honor of the event, I assembled a gallery of periodic tables, but let me tell you more about the table first.

The chemical elements are arranged from top to bottom, in order of lowest to highest atomic number. (Atomic number is the same as the number of protons.) There are 118 elements. 98 are naturally occurring, and 14 occur naturally in decay chains of those 98, up to and including californium. The remaining six elements are lab synthesized.

timmurtaugh via Flickr

Periodic Tattoo

Why is it periodic?

Table rows are “periods” and table columns are “groups.” Some groups have specific names, e.g. the noble gases, occupying the last column on the right. Some rows do too, such as the lanthanides and actinides on the bottom two rows.

The table is also periodic because its inventor, Dmitri Mendeleev, intended for it to be updated periodically, as new elements are found. So Mendeleev’s design had a dual use: for describing how the elements relate to each other, as well as for inferring the properties of new and not yet found elements.

One scientific concept to rebuild civilization

The children’s Periodic Table on the U.S. EIA website has the basics. It links to Los Alamos National Lab’s (LANL) Periodic Table.

Photo of Los Alamos National Labs chemist with period table

Actinides at LANL

Here is a great quote from a recent LANL news story by David Hobart, Actinide Analytical Chemistry, History of the periodic table…and my history with it:

As the legendary physicist Richard Feynman put it, “If some universal catastrophe was to engulf the world and humankind could retain only one scientific concept to rebuild civilization, what would it be? The chemist’s answer is almost invariably the Periodic Table of the Elements.

(more…)

Published in: on March 24, 2012 at 9:02 am  Comments (8)  
Tags: , ,

Radiation levels in Japan and the U.S.A.

UPDATE 13 April 2011: All links work in Part 1. Added a Part 2 for U.S, European radiation levels

Part One: Radiation levels in Japan

The source for this chart is Ryugo Hayano, Ph.D. Professor Hayano is the Physics Department Chair at The University of Tokyo. Click on the image to view a larger version, with higher resolution. It links directly to the Professor’s user page on image-sharing site Plixi. You’ll find many other charts and graphs there. Some charts are localized at a prefecture level.

Graph of Radiation

Graph of Radiation levels in Japan on 10 April 2011

I offer my thanks to @hayano and Daniel Garcia. Daniel R. Garcia Ph.D. is a nuclear scientist from France, doing a post-doc at TEPCO, in Fukushima. He was there prior to the earthquake and tsunami. Daniel frequently sends updates via Twitter as @daniel_garcia_r. He works at the reactor site every day, takes photos, and makes them available via Twitter.

Fukushima nuclear plant

Control board of Fukushima 1 Nuclear Power Plant when all was well

Both Daniel and Professor Hayano are reliable, because they never confuse Becquerel with Sievert with Roentgen, they know radio-isotopes and their half-lives better than nearly anyone. Daniel had to assisted the press a few weeks ago when there was confusion between Cesium 137 versus Iodine 137 versus Iodine 131 versus Uranium 137.

PART II: Other locales, other radiation levels

The Radiation Network is an excellent resource for radiation information in the U.S.A. and other parts of the world. It is a network of civilian volunteers using a protocol to report radiation readings, 24 hours a day, 7 days a week. Sensor stations are located throughout the contiguous 48 states, Hawaii,  Alaska and Norway. There was one in Northern Japan. Sadly, it went off-line last month.

The Radiation Network is non-profit, all volunteer and headquartered in Arizona. Tim is the public face of the Radiation Network. Using software developed for this purpose, Tim collects and aggregates the real-time data from the sensor stations, then updates the map online with the readings at one-minute intervals. The Radiation Network has went online nearly a decade, ago. Thus they offer very reliable baseline measures for comparison and detection of any incident. Their criteria for elevated radiation include

  • Rule out protocol for false positives e.g. spikes due to sensors  malfunctioning,
  • Level of radiation that is significant: Higher than the threshold AND sustained, and how long “sustained” is,
  • Exogenous causes such as geography. Readings in Colorado are always higher due to the higher elevation.

The site is basic but  functional. There are The Maps, and The Message. The Message is a running log of updates.

In addition to the embedded links above, you can read a little more about the Radiation Network in this little piece I wrote on Amplify on April 7.

Published in: on April 10, 2011 at 8:59 am  Leave a Comment  
Tags: , , , , , , , ,

WeatherBill raises new round of funding

With the addition of $42 million in a Series B round, funding in this catastrophic insurance risk startup company now totals $60 million. The total is primarily due to today’s large infusion of cash from Google Ventures.

What is WeatherBill?

With statistical analysis and distributed computing for better weather forecasting, WeatherBill can offer farmers more competitive insurance rates, specifically, a personalized insurance policy. The company was founded four years ago by two former Google employees, one of whom was Chief Technology Officer at Google.

I hope WeatherBill is successful. This story is a welcome change from news about over valued social media companies, e.g. TechCrunch’s recent post about J.P. Morgan’s rumored investment of $450 million in Twitter. It is a welcome change when a major venture capital investment is made in a business targeting farmers!

Rainmakers For WeatherBill

WeatherBill Inc. is announcing $42 million in Series B funding from Google Ventures, Khosla Ventures and several previous investors… WeatherBill aggregates large amounts of weather data from the National Weather Service and other sources to run large-scale simulations that assess the probability of weather occurring several years in advance anywhere on the globe.

“Agriculture is an unusual area for venture capital, but we submit that agricultural technology has the same potential as biotechnology had in pharmaceuticals or chips had in telecommunications,” Khosla said.

via blogs.wsj.com (28 February 2011)

Published in: on March 1, 2011 at 12:48 am  Comments (2)  
Tags: , , , ,

Rare-Earth Metals, China Update 1

A better title would have been Postcard: People’s Republic of China, except for the fact that I’m in Arizona. Let’s begin with the impending global rare-earth metals shortage.

What are rare-earth metals?

Possible shortages in rare-earth metals seems arcane. What are they? Depending on who you ask, they are 15 to 30 elements with the following common properties: A silvery or grey appearance, high luster that is quick to tarnish in air and very high electrical conductivity. They are not all that rare, but earned their name from the tedious process by which they were extracted prior to advancements in metallurgy in the 1950’s.

Periodic table

Lanthanide series and a few more: The 17 Rare-earth Elements

Here is a most beautiful Periodic Table of the Elements by Perioden System. If you like the Periodic Table, I highly recommend having a look at their interactive version, on Perioden System’s home site. Super-high resolution downloads are available free.

The 17 elements that are universally considered rare-earth elements are also known as the Lanthanides. The name is pleasingly appropriate, as it is derived from the Greek lanthanon, meaning I am hidden. They appear on the bottom drop-down of the chart, numbers 57 Lanthanum, through 71 Lutetium. Elements Scandium and Yttrium comprise the rest of the rare-earth metals. Several members of the second series, the Actinides, are also classified rare-earth by some, including Thorium and Uranium.

Important! Precious metals, which are refined from the elements Gold, Platinum, Palladium, Silver, Rhodium and Iridium are NOT in the same group as the Rare-Earth elements. This confusion is common. Referring to the Periodic Table will clarify, as precious metals have atomic numbers 45-47 and 77-79.

China now mines 95% of the world’s rare-earth metal

Physics Today Online

Rare-Earth Metals Shortage

Physics Today (May 2010) reports new concerns over China’s dominance of rare-earth mining. This presents a risk exposure to the People’s Republic of China, as the U.S.A. and the rest of the world have been highly dependent on China as a source of rare-earth metals for decades.

Demand is expected to increase as green technologies gain more acceptance and use. Special batteries use rare-earth metals. Hybrid car motor construction requires Dysprosium, element 66. All of the heavy rare-earth metals such as Dysprosium are mined in China. Heavy refers to heavy nuclei, which simply means a larger number on the periodic table. In general, the heavier nuclei rare-earth elements are the most sought after.

According to the Physics Today article, concentration of both rare earth metals and rare earth mining activity has shifted the world’s rare earth knowledge base, from the U.S.A., South America and Africa to China. Over 80% of the world’s material scientists, geologists and experts in rare-earth metals reside in China. Consequences of this localization are dramatic. For example, the division of General Motors which deals with miniaturized magnet research shut down its US office and moved the entire staff to China.

USGS summary of RE element mining activity

Rare-earth oxide production per year*

On September 1, 2009, China announced plans to cut its rare earth mining quota to 35,000 tons per year in 2010-2015 to conserve scarce resources and protect the environment. This isn’t necessarily a play for monopoly power and hegemony, as there is a limited supply of natural resources. Illegal rare earth mines are common in rural China and release toxic wastes into the general water supply, presenting further environmental concerns for China.

* Chart of global rare-earth resources courtesy of Wikipedia and the U.S. government